

LA-UR-19-28184

Approved for public release; distribution is unlimited.

Title: An Introduction to Quantum Dots as Scintillating -Radiation

Detectors

Author(s): Starvaggi, Nicholas Charles

Intended for: Report

Issued: 2019-08-13

An Introduction to Quantum Dots as Scintillating y-Radiation Detectors

Nicholas Charles Starvaggi NEN-3: International Threat Reduction Summer 2019 SULI Internship

Scintillation Technology

 A scintillator is any material capable of converting some of the energy of incoming incident particles into low-energy photons in the ultraviolet to visible range for a variety of technical applications.¹

- Nuclear engineering
- Medical imaging
- National Security
- High-energy physics
- Scintillating Radiation Detectors
 - Inorganic or organic composition
 - Luminescent properties
 - Identify radioactive sources
 - Characterize radiation
 - Quantify radiation intensity

Fig. 1: Mechanism for γ -radiation down-conversion with plastic scintillators.¹

Types of Scintillators

- Inorganic Crystals¹
 - NaI(TI), CsI(Na)
 - High light yields for γ-radiation detection and spectroscopy
 - Expensive and susceptible to rapid degradation
- Organic Materials¹
 - Crystals
 - Acceptable light yields
 - Fragile, difficult to machine and polish
 - Liquids
 - Large-scale production possible
 - Flammability and toxicity of aromatic solvents
 - Plastics
 - Low light yields
 - Minimal hazards

Fig. 2: Nal(TI) scintillator. Courtesy of www.ost-photonics.com

Fig. 3: Luminescent plastic scintillators. Courtesy of www.oeaw.ac

NaI(TI) Scintillator Schematic

Fig. 4: NaI(TI) Scintillator and PMT schematic. Courtesy of www.nuclear-power.net

Scintillating γ-Radiation Detectors

- Ideal Scintillator Characteristics²
 - High-Z composition
 - Increase γ-attenuation
 - Generate photoelectron production
 - High light yield
 - Increased photon count per unit of energy deposited
 - Optical clarity
 - Short emission decay lifetime
 - Timing resolution⁴
 - Immediate system response
 - Low Cost
 - Ease of large-scale fabrication

Fig. 5: Effect of organo-bismuth (high-Z) loading on the radiation response of a scintillator.³

Wavelength Shifters for Advanced Scintillators

Fig. 6: Mechanism for γ-radiation down-conversion with fluor-doped plastic scintillators.¹

Fig. 7: Typical responsivity (A/W) of an avalanche photodiode (APD). Courtesy of www.thorlabs.com.

Quantum dots offer an alternate method to γ -radiation downconversion in the next generation of photomultiplication devices.

QD Basics

- Semiconductor Nanoparticle Crystals
 - Inorganic Core
 - High-Z element composition
 - Interactions with radiation
 - Ligand Shell
 - Easily manipulated
 - Determines solubility⁵
- Quantum Mechanical Properties
 - Particle size
 - 2-10 nm
 - Energy bandgap
 - Emission profile⁶

Fig. 8: Ball-and-stick model of a QD showing the inorganic core and ligand shell. Fig. adapted from proposal.⁶

Los Alamos National Laboratory

Key Properties

- Characteristic Emission Color
 - Dependent on particle size and bandgap
- Smaller QDs, Larger Bandgap
 - More energy to promote a single e⁻ to an excited state
 - Results in a higher energy frequency (v) and shorter wavelength (λ)
 - Emit light towards violet/indigo end of the visible light spectrum
- Larger QDs, Smaller Bandgap
 - Less energy to promote a single e⁻ to an excited state
 - Results in lower ν and longer λ
 - Emit light towards red/orange end of the visible light spectrum

Fig. 9: Comparison of the energy orbital diagrams of molecules, QDs, and semiconductors.

Fig. 10: QD sizes displayed along the visible light spectrum.⁶

Synthesis of QDs

- Basic Procedure
 - Pyrolysis (decomposition) of organometallic precursors in hot solvent generates QDs⁵
 - QDs are bound in aqueous solution
 - Subsequent reactions in coordinating solvents are often performed to manipulate the ligands
 - Reaction length affects nanoparticle size
- Special Focus on High-Z Element Combinations
 - Cd/Se, Cd/S
 - Pb/Se, PbS
 - In/As, In/P
 - Zn/Se, Zn/S

Fig. 11: Effect of reaction time in the synthesis of QDs.⁶

Fig. 12: Diagram of a PbSe/CdSe core-shell quantum dot.⁷

QDs as Scintillating γ-Radiation Detectors

QD Research

- Nanometer dimensions increases bandgap and allows for visible luminescence⁹
- Integrates necessary high-Z inorganics with organic dyes in a polymer matrix⁸
 - Polystyrene (PS) and polyvinyl toluene (PVT)
 - Potential copolymerization applications with acrylate compounds to increase durability
- Resulting plastic scintillator is low-cost and has a short-emission decay lifetime
 - Optical transparency contributes to high light yield

Challenges

- Self-attenuation (self-reabsorption)
- Incorporation into a polymer matrix

Fig. 13: Self-attenuation in average quantum dots. Fig. adapted from proposal.⁶

Giant Quantum Dots (gQDs) in LANL Scintillation Technology

- gQDs, developed by Jennifer Hollingsworth at CINT, are a LANL-patented alternative to standard QDs¹⁰
 - Ultra-thick CdSe/CdS core-shell system
 - Increased photostability
- Special Core-Shell Functions
 - Shell absorbs light, core emits light
 - Absorption energy is higher than emission energy
 - Shell serves as the wider-gap semiconductor in comparison to the core material
 - Light emitted by a single gQD is thus not reabsorbed by other gQDs in polymer matrix

Fig. 14: Comparison of standard QDs (left) and LANL-patented gQDs (right). The absorption (dark lines) and emission (light lines) demonstrate the lack of self-attenuation in gQDs. Fig. adapted from proposal.⁶

Research Goals, Challenges, & Solutions

- Polymerization of PS and PVT
 - Initial photoinitiation via BAPO
 - Copolymerization with 2-carboxyethyl acrylate $(C_6H_8O_4)$
 - 3:1 Ratio
 - 6:1 Ratio
- Incorporate wavelength shifters
 - POPOP (C₂₄H₁₆N₂O₂)
 - Characterization
 - IR Spectroscopy
 - UV-VIS spectrophotometry
 - Fluorimetry

Fig. 15: 2CEA:PS/PVT (6:1) samples with 3 mg of POPOP exposed to UV light.

Initial IR Results

Fig. 16: IR spectra of 2CEA/PS composite (black line) and neat styrene (orange line). Styrene IR courtesy of www.webbook.nist.gov.

IR Results (cont.)

Group	Range (cm ⁻¹)
R-CH=CH ₂	985-1000 and 905-920
R ₂ CH=CH ₂	880-900

Table 1: IR frequency ranges (cm⁻¹) for functional groups relevant to styrene.

Fig. 17: Zoomed-in insert of Fig. 15 from 500-1000 cm⁻¹. Styrene IR courtesy of www.webbook.nist.gov.

Conclusions & Future Work

- Inconclusive polymerization trials
 - IR data suggests a lack of polymerization
 - Extended exposure to visible light resulted in solid composite
 - Vinyl toluene and styrene performed identically
- Future Work
 - Cationic photopolymerization
 - Incorporate gQDs to mitigate self-attenuation
 - UV-VIS Spectrophotometry
 - Fluorimetry
 - Stronger UV exposure to aid photopolymerization

Fig. 18: Solid styrene/BAPO composite after seven days of visible light exposure.

Acknowledgements

- Special Thanks To...
 - Dr. Amanda Graff
 - Dr. Morag Smith
 - NEN-3: International Threat Reduction
 - NEN-1: Safeguards Science & Technology
 - MST-7: Engineered Materials
 - Workforce Development for Teachers and Scientists (WDTS)
 - Science Undergraduate Laboratory Internships (SULI) Program
 - Los Alamos National Laboratory (LANL)

Questions?

References

- ¹Hajagos, T. J., Liu, C., Cherepy, N. J., Pei, Q., Adv. Mater. **2018**, 30, 1706956.
- ²Chao Liu, Zhou Li, Tibor Jacob Hajagos, David Kishpaugh, Dustin Yuan Chen, and Qibing Pei. ACS Nano **2017** 11 (6), 6422-6430
- ³Cherepy, N. J.; Sanner, R. D.; Beck, P. R.; Swanberb, E. L.; Tillotson, T. M.; Payne, S. A.; Hurlbut, C. R. *Nucl. Instrum. Methods Phys. Res., Sect. A* **2015,** *778,* 126.
- ⁴Yanagida, T. Inorganic scintillating materials and scintillation detectors. *Proc. Jpn. Acad., Ser. B* **2018**, *94*, *(2)*, *75-97*.
- ⁵Hollingsworth, J. A. *Encycl. Inorg. Bioinorg. Chem.* **2011**, 1.
- ⁶Zhao, H.; Rosei, F. *Chem* **2017**, *3*, 229.
- ⁷Torchynska, T., Vorobiev, Y. Semiconductor II-VI Quantum Dots with Interface States and their Biomedical Applications. *Adv. Bio. Eng.* **2011.**
- 8Murphy, C. J., & Coffer, J. L. (2002). Quantum Dots: A Primer. Applied Spectroscopy, 56(1), 16A-27A.
- ⁹S. E. Létant* and T.-F. Wang. *Nano Letters* **2006** *6* (12), 2877-2880
- ¹⁰Yagnaseni Ghosh, Benjamin D. Mangum, Joanna L. Casson, Darrick J. Williams, Han Htoon, and Jennifer A. Hollingsworth. *Journal of the American Chemical Society* **2012** *134* (23), 9634-9643